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As the effects of anthropogenic climate change have become
more apparent, the influences of climate and extreme weather
events on health have continued to gain attention. The fact Earth
has warmed over the past century is indisputable and the rate of
warming is more alarming. As a result of anthropogenic climate
change, an alteration in the air mixture has occurred over time.
These changes have increased human exposures to respiratory
irritants such as ground-level ozone, volatile organic compounds,
nitrogen dioxide, sulfur dioxide, carbon monoxide, and
polycyclic aromatic hydrocarbons. A significant amount of
research has investigated the effects of climate change on
aeroallergens, which has shown that elevated temperatures and
increased carbon dioxide levels have produced prolonged and
more robust pollen seasons for most taxa studied. In addition, it
appears possible that exposure of some plants to air pollution
may result in more allergenic pollen. Increased human exposures
to these respiratory irritants and aeroallergens appears to
disproportionality effect vulnerable populations throughout the
world. It is essential to understand that climate change is more
than an environmental inconvenience and realize the effects to
human health are directly related and conceivably immeasurable.
It is vital to conduct additional research related to climate
change and health that is collaborative, multisectoral, and
transdisciplinary. There should be a focus on risk reduction,
mitigation, and preparedness for climate change and extreme
weather events for all populations around the globe. � 2024
American Academy of Allergy, Asthma & Immunology (J Allergy
Clin Immunol Pract 2025;13:266-73)
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Earth’s climate has been shifting throughout history, but these
changes have accelerated owing to human activities, most notably
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.S. Centers for Disease Control and Prevention
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NAAQS- N
ational Ambient Air Quality Standards

PM- P
articulate matter
VOCs- V
olatile organic compounds
the burning of fossil fuels, particularly since the onset of the
industrial era. This has created a harmful cycle in which green-
house gases and air pollutants, emitted from industries, trans-
portation, construction, energy production, and agriculture,
contribute to global warming.1 As a result, the Earth has warmed
by approximately 1.1�C since the late 1800s.2 The past decade
(2011e2020) was the hottest ever recorded, with surface tem-
peratures continuing to break records year after year.3,4 The
rising temperatures lead to more frequent heat inversions, trap-
ping pollutants like nitrogen oxides and volatile organic com-
pounds (VOCs). When these interact with ultraviolet light, they
generate ozone. The downstream effects of warmer climate also
increases the likelihood of wildfires, contributing to higher levels
of fine particulate matter with an aerodynamic diameter of 2.5
micrometers or smaller (PM2.5), exacerbation of drought con-
ditions, and increased dust and PM2.5-10 levels.

5-8

Althoughmany consider the interplay of anthropogenic climate
change and health a 21st centuryeborn concern, it is not. The
Swedish scientist Svante Arrhenius raised concerns as far back as
1896 that human activity could increase carbon dioxide (CO2) and
markedly warm the atmosphere.9 It was not until 1988, however,
that the Intergovernmental Panel on Climate Change (IPCC) was
commissioned, which has proven to be critical for research,
modeling, disseminating information, and better understanding
how to address climate change and initiate mitigation measures.
The effects of climate change on health are wide-reaching and
complex, examples of downstream effects include rising tempera-
tures affecting the spread and transmission of vector-borne disease,
increasing short-term mortality due to heat stroke, potential food
shortage and malnutrition, population displacement due to
oceanic thermal expansion, unreliable access to clean water, and
increases in respiratory and allergic diseases.2,10,11 More specif-
ically, greenhouse gases and air pollutants, directly damage the
respiratory tract, further exacerbating health risks.12 In addition,
warmer temperatures have been linked to earlier and more robust
pollination seasons, resulting in heightened and altered degree of
exposure to aeroallergens. The purpose of this review is to highlight
evidence describing the effect of anthropogenic climate change on
aeroallergen and irritant exposures.

ALTERATIONS OF THE AIR MIXTURE
Climate change and air pollution are interconnected, and

climate change has an important impact on air pollutants and air
quality. Weather and climate have significant roles in deter-
mining patterns of air quality. Furthermore, air quality has sig-
nificant impact on climate. Air pollution emission, transport,
dispersion, chemical transformation, and deposition can be
influenced by meteorological variables including temperature,
humidity, wind speed/direction, and mixing height.13 Climate
change has been shown to affect air quality, and predictions have
revealed that climate change will continue to significantly impact
air quality well into the future.13-15 Air quality may be affected
by climate change through several factors including changing
atmospheric ventilation and dilution, altered precipitation and
modified atmospheric chemistry. The 2 major impacts of climate
change on air quality are degrading the removal processes (pre-
cipitation and dispersion) and amplifying atmospheric
chemistry.13,16

Climate change has been shown to influence both particulate
air pollutants and gaseous air pollutants.17 Particulate air pol-
lutants can be of natural origin or generated by human activities.
Motor vehicle exhaust is an important source of particulate air
pollutants. Other significant anthropogenic sources of particulate
air pollutants include industrial plants and power stations,
heating and air conditioning systems, and agriculture.11,17,18

Natural sources of particulate air pollutants include wildfires
and dust storms.13 Particulate matter is characterized based on
aerodynamic diameter including PM10, PM10e2.5, and PM2.5.

17

PM2.5 (particles with a diameter < 2.5 mm) may originate from
anthropogenic sources including exhaust and road dust as well as
natural causes. Climate change associated extreme weather events
such as heatwaves, drought, severe storms, and wildfires can
intensify air pollution levels.19 Climate change can contribute to
an increase in the number and severity of wildfires, increased
frequency of dust storms and dust particle transport, both of
which emit large amounts of PM2.5.

13,19,20 Increasing evidence
links both short- and long-term exposure of PM2.5 to acute
cardiovascular events, heightened mortality, and reduced life
expectancy. Whereas PM2.5 and PM10 can be inhaled and
deposited in the respiratory tract, PM2.5 penetrates the distal
airways and PM10 tends to settle in the upper airways. These
particles can cause tissue damage and lung inflammation upon
deposition. In particular, PM2.5 exposure is associated with
increased risks of myocardial infarction, stroke, arrhythmias,
heart failure exacerbations, and chronic lung disease exacerba-
tions.21-24

Gaseous air pollutants include ground level ozone (O3), vol-
atile organic compounds, nitrogen dioxide (NO2), sulfur dioxide,
carbon monoxide, and polycyclic aromatic hydrocarbons that are
significantly increased by anthropogenic sources.17 Ground level
O3 forms from the chemical reactions between NO2 and VOCs
in the presence of sunlight and heat. The rate of ground level O3

formation is temperature-dependent.13,19 Increases in summer
temperature by 1�C corresponds with a 2.90 ppb increase in O3

concentration.25 Predictive modeling suggests that urban and
regional O3 concentrations in the United States may increase
approximately 5% to 10% between now and 2050 as a result of
climate change despite holding anthropogenic emissions and
global background concentrations constant.26,27

Natural VOCs emissions are also increased by climate change
secondary to altered plant metabolism and increased tempera-
ture, which further affects O3 concentration.13,28 Drier and
hotter conditions associated with climate change may lead to
amplified O3 concentration by increasing the rates of photo-
chemical production.29
BIOGENIC PARTICLES AND CLIMATE CHANGE
Aerobiologists have been studying airborne bioparticles with

allergenic properties for decades. Aeroallergens are proteins
dispersed through the air with potential to induce allergic con-
ditions such as rhinitis, conjunctivitis, and asthma. Undoubtedly,
extensive research has been conducted on aeroallergens with a



FIGURE 1. Bibliometric search results extracted from the SCOPUS database for the terms ["climate change" and (pollen* or fung*) and
allerg*)] (only English papers) with the number of articles published in the scientific literature per year.
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primary emphasis on pollen grains. Over the last 3 years
(2022e2024), 103 scientific papers have been published as
original articles, according to the largest literature database
SCOPUS (Figure 1).

Airborne pollens are not only relevant to human health but
also have been applied as an indicator of climate change as stated
by the IPCC.30 A wide array of changing aeroallergen patterns
has been observed with a focus primarily on pollen abundance
and pollen season characteristics.7,30-32 In order to provide ex-
planations for observed changes or trends, the behavior of other
aspects of plants’ reproductive ecology that impact airborne
pollen have been studied, including flowering phenology,33,34

pollen production,35-37 abundance/type of regional vegeta-
tion,38 and land use changes.39 In addition, for fungal spores,
investigations to assess the ability of sporulation under differing
environmental conditions have been conducted.40 Some of this
work has further implicated the role of croplands as fungal spore
sources, but such studies are limited.40

In order to monitor potential long-term changes in abundance
of aeroallergens (and biodiversity), several methodologies have
been developed for air sampling. These include manual volu-
metric or impaction samplers to automatic real-time sam-
plers.41,42 Moreover, molecular methods have also been
implemented to complement or enhance the previously
mentioned approaches. However, universal methodology is
lacking, posing challenges concerning data comparability and
accurate interpretation of results. The gold-standard method for
air sampling is Hirst-type samplers, typically positioned on a
rooftop in an urban environment. Further research is needed in
rural, semi-natural, and natural environments to identify po-
tential trends and compare them with urban areas. Natural en-
vironments remain largely untouched by human activity,
whereas semi-natural environments are modified by humans but
retain significant natural features. The associated impact of aer-
oallergens on health has promoted the development of faster
detecting devices, nearly real-time, in order to catch up to the
demand that may allow for more robust data and higher tem-
poral resolution.43,44 However, many of these new technologies
are quite expensive, which at the moment, limits access to some
research groups.

Emerging and novel aeroallergens

As a consequence of human activities around the globe and
climate change, several plants and other organisms have changed
their distribution limits. Many plants have been established in
new areas, mainly by seed dispersal or via artificial planting,
allowing them to reproduce freely within their new habitats. As
newcomers, their pollen can prove to be an emerging or a novel
aeroallergen to the area, such as in the cases of Ambrosia,45,46

Ailanthus,47,48 Broussonetia,49 Cupressus arizonica,50 and
Cannabis.51 Pollen from several of the aforementioned species
have been characterized as allergenic and introduced in various
parts of the world. Targeted research and creation of easily
accessed databases on these new or emerging aeroallergens are
vital for timely detection and implementation of appropriate
mitigation strategies.

Altered and more robust aeroallergens
Aeroallergens such as pollen grains and fungal spores have

proven to be bioindicators of climate change. Pollen grains have
been the center of interest and certain pollen taxa have been
more robustly studied than others. Examples of more readily
studied taxa include Ambrosia and Cupresssaceae in North
America, Betula and Poaceae in central and north Europe, and
Olea and Quercus in southern Europe. Studies have shown that
aeroallergen expression can increase through differing stimuli
such as increasing temperature,52 pollutants,52-54 specifically
NO2 for Betula

37 and CO2 for Ambrosia.
55-57 In addition, other

biological factors can promote aeroallergen expression, such as in
the case of bacteria or fungi growth on pollen.58

In several cases, pollen abundance of Carpinus, Corylus,
Cupressaceae, Pinaceae, Quercus, and Urticaceae in Greece40,59;



FIGURE 2. Trend of annual mean CO2 (ppm) record from 1959 to 2023 at Mauna Loa Observatory, Hawaii.90
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Alnus, Corylus, Betula, Fraxinus, Quercus, Platanus, Poaceae,
and Artemisia in Benelux60; Cupressaceae/Taxaceae, Ulmus,
Populus, Salix, Ostrya, Quercus, Olea, Plantago, Cannabaceae,
and Ambrosia in Italy61; Alnus, Quercus, Poaceae, Olea, Poaceae,
Quercus, Poaceae, and Betula in Spain58,62,63; and Betula and
Poaceae in the United Kingdom64 exhibited an increasing trend
with rising CO2 and temperature. On the contrary, significantly
fewer pollen concentrations have been reported as decreasing
over time, such as for Populus in Greece40; Juniperus, Populus,
Ulmus, and Morus in New Mexico65; and similarly for the
fungal taxa Agrocybe, Botrytis, Cladosporium, and Nigrospora40

also in Greece.
Apart from changes in abundance of these bioparticles, their

seasonality is also subject to variability due to climate change
pressure.7,32 The onset of pollen season occurs earlier in the
majority of the pollen taxa studied, but end of the season remains
marginally changed. This phenomenon has been observed for
Alnus, Betula, and Corylus in Spain.66 Also, Poaceae pollen season
began earlier, although later end dates or no trends were found
for herbaceous pollen types (ie, Poaceae and Urticaceae).66 These
results indicate a general increase in the duration of pollen sea-
sons, which increases the potential pollen risk period for allergic
sufferers.6,67

The neglected aeroallergens, fungal spores

Whereas the main focus of research on climate change and
aeroallergens has centered on pollen grains, the effect of other
bioparticles on health has been understudied. This is the case for
fungal spores, which only a few studies have been conducted to
date.41,64,68,69 It is important to understand spore behavior un-
der climate change scenarios because they may affect plants’
physiology through host-microbe relationships and act synergis-
tically to provoke allergic symptoms in humans.70 Recently,
Demain et al71 reported that sporulation of fungi is likely to be
amplified as CO2 concentration increases with climate change,
potentially contributing to the increasing prevalence and severity
of asthma and other respiratory disorders. For fungal or
arthropod allergen production, there are rational links to climatic
change that could influence seasonality; however, unlike plant
aeroallergens, clear indications of seasonal changes are lacking.72

Finally, phytopathogenic microfungi of various vegetation types
(common crops, ornamental plants, and weeds) can potentially
be allergens, many of which have not yet been studied, although
climate change may contribute to the expanding range of many
plants and, consequently, their fungal pathogens.73

Another effect of climate change has been an increase in heavy
precipitation and extreme weather events resulting in both inland
and coastal flooding. These events may lead to significant indoor
fungi growth, which can have a direct impact on human health.
Research in this area has primarily focused on post-hurricane
flooding and subsequent indoor fungi growth. These studies
have reported increased fungal spore production and altered
composition of indoor fungal species post-hurricane.74-76
CLIMATE CHANGE IMPACT ON HUMAN HEALTH
Ambient air pollutants pose significant health risks to in-

dividuals of all ages, regardless of preexisting respiratory disease.
At high concentrations, these pollutants directly inflame airway
epithelium and, even at lower concentrations, can provoke
airway hyperresponsiveness and inflammation.77,78 In a 2023
study, Bi and colleagues79 analyzed 3.19 million asthma-related
emergency department visits from 2005 to 2014 across the
United States, finding positive associations between multiday
exposure to fine and coarse PM, gaseous pollutants, and
increased asthma emergency department visits. Their findings
indicated that PM2.5 had significant effects across all age groups,
whereas O3 was more impactful on adults, and pollutant effects
were especially pronounced in children.79 Patients with asthma,
particularly the elderly, may be more vulnerable to diminished
lung function and increased risk of hospital admissions due to
exposure to PM2.5, O3, and NO2.

80-82 Whereas numerous
studies81-84 have linked elevated pollutant levels to higher rates of
hospital admissions and exacerbations of asthma and chronic
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obstructive pulmonary disease, the 2022 report by Wei and
colleagues85 suggests that even short-term exposure to PM2.5,
O3, and NO2 at concentrations below the National Ambient Air
Quality Standards (NAAQS) is associated with an increased risk
of hospitalization owing to asthma exacerbation.85 In addition,
there is growing evidence that early exposure to air pollutants,
potentially even in utero, is linked to the development of asthma.
A 2015 population-based birth cohort study assessed annual
average concentrations of air pollutants, including NO2, PM2.5,
PM10, PMcoarse, and soot, at the birth addresses of participants.86

The study demonstrated that elevated exposure to NO2 and soot
at the birth address is associated with an increased risk of asthma
development by adolescents. The meta-analysis reported an
adjusted odds ratio of 1.13 per 10 mg/m3 of NO2 (95% confi-
dence interval 1.02e1.25) and a 1.29 per unit increase in PM2.5

absorbance, which is an indicator of soot (95% confidence in-
terval 1.00e1.66).86 Furthermore, exposures to ambient pol-
lutants (PM1, PM2.5, PM10) during pregnancy and the first year
of life have showed a significant association between early-life
exposure to PM, particularly during gestation, and an elevated
risk of childhood asthma and wheezing.87

Whereas pollutant exposure significantly impacts asthma, it is
also strongly linked to respiratory infections. In a 2018 study,
Horne and colleagues88 examined 146,397 individuals on Utah’s
Wasatch Front diagnosed with acute lower respiratory infections
and discovered that higher PM2.5 levels were associated with
increased odds of acute lower respiratory infectionerelated
health care encounters, particularly among children aged 0 to 2
years, with an odds ratio of 1.15 per 10 mg/m3 increase in PM2.5.
The study also reported a surge in cases of respiratory syncytial
virus and influenza following elevated PM2.5 levels, with more
pronounced effects among those who were overweight or
smokers.88 Similarly, Anderson and colleagues89 explored the
relationship between air pollution and pneumonia in a cohort of
325,367 participants from the ELAPSE project across 6 Euro-
pean countries. This showed that exposure to NO2 and black
carbon was associated with a 10% to 12% increase in mortality
from pneumonia and influenza, although the hazard ratios sug-
gested a trend toward statistical significance. The findings reveal
that, even at relatively low concentrations, long-term exposure to
air pollution is linked to higher mortality rates. This suggests that
current air quality standards may not adequately protect public
health and highlights the need for stricter regulations to reduce
exposure to harmful pollutants.89

A significant area of concern is the impact of climate change on
aeroallergens and patients with respiratory and allergic diseases.
Elevated temperatures and increased CO2 levels are expected to
shift earlier and intensify pollination periods for certain plants,
leading to increased production of highly allergenic pollen
(Figure 2).90 These changes, coupled with the pro-inflammatory
effects of pollen-associated lipid mediators, are reshaping the tra-
jectory of allergic diseases.32,91 Shifts in plant habitat patterns have
also been observed, with species gradually migrating poleward,
northward to the Northern Hemisphere and southward to the
Southern Hemisphere.92,93 Climate change triggers not only the
migration of plants but also the displacement of human pop-
ulations in affected regions. Without substantial efforts to mitigate
climate change, the number of “climate change migrants” is ex-
pected to reach 1 billion by 2050.94,95 Population migration can
be a consequence of extreme weather events, such as major storms
and hurricanes, that cause economic devastation, leading to
unemployment, poor living conditions, injuries, and severe dam-
age to infrastructure and health care facilities.96,97 This forced
displacement is linked to a higher incidence of acute respiratory
infections, tuberculosis, and sleep-related disorders. Moreover, the
shift from rural to urban areas has been associated with an increase
in allergic diseases, including asthma.97-99

There is also an interplay between individual components of
the air mixture and health outcomes. For example, PM and diesel
exhaust can exacerbate allergic responses by increasing mucosal
permeability, disrupting allergen clearance, and facilitating
allergen transport, with effects mediated by reactive oxygen
species. Higher air pollution levels, combined with ambient
aeroallergens, are associated with increased asthma hospitaliza-
tions, highlighting the potential benefit of reducing air pollution
to mitigate allergic asthma exacerbations.100,101 How and which
components of the air pollutant mixture may augment allergic
airway responses warrant further study.

WHAT HAPPENS NEXT AND WHERE DO WE GO

FROM HERE?
It is critical to appreciate that climate change is not simply an

environmental problem but the potential effects to health are
interrelated and perhaps immeasurable. Climate change will
continue to affect organisms, plants and fungi, and consequently
aeroallergens.102 This could mean (1) intensification of the
allergenic capacity to induce allergic symptoms via increased
allergenicity or quantity of pollen/spores produced, (2) changes
in seasonality or duration of specific aeroallergens, and/or (3)
altering the synergistic effect with other biological or chemical
factors.31 Based on the aforementioned data reviewed, estab-
lished international literature, and research, it is essential to
continue monitoring climate driven changes of aeroallergens.
The U.S. Centers for Disease Control and Prevention (CDC)
have suggested a One Health103 method, which is described as a
“collaborative, multisectoral and transdisciplinary approach—
working at the local, regional, national and global level—with the
goal of achieving optimal health outcomes recognizing the
interconnection between people, animals, plants, and their
shared environments.” Through this perspective of the One
Health approach, research, mitigation, and adaptation should
focus on the following pillars:

� Reassess the design and management of urban green spaces to
incorporate and maintain drought-resistant flora that possess
minimal allergic potential.

� More robustly study the effect of various environmental in-
fluences (eg, climatological, pollution, land use) on
aeroallergens.

� Conduct considerably more research on how climate change
effects vulnerable populations and effective mitigation
strategies.

� Develop new or advance the existing air sampling technolo-
gies; enabling results to be more accurate, robust, and com-
parable among different regions.

� Development of early warning systems for extreme weather
events.

� Conduct additional research on indoor air quality with regard
to aeroallergens.

� Promote collaboration among scientific experts (eg, biologists,
agronomists, public health experts, medical doctors) and local
governmental agencies.
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� Patients can protect their health from climate change by
staying informed, minimizing exposure to pollutants and al-
lergens, adopting preventive health measures, engaging in
community initiatives, and working with health care providers
to manage risks and adaptation effectively.

� Physicians play a vital role in addressing the health impacts of
climate change by educating and advocating for patients,
conducting and supporting research, engaging in public health
and policy initiatives, and collaborating globally to promote
prevention, preparedness, adaptation, and equitable health
strategies.
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